

### GOES-R Notional End-To-End Architectures

## Sandra Alba Cauffman GOES-R Deputy Project Manager

Satellite Direct Readout Conference for the Americas
December 9 – 13, 2002
Miami, Florida



## Outline

- > Mission goals
- > Candidate instruments
- > Instrument Formulation
- Architecture studies purpose / approach
- Possible configurations
- > Top level Schedule



### **GOES-R Series Mission Goals**

- Develop and deploy a reliable operational system that provides continuous observations of the environment and severe storms to protect life and property
- > Monitor solar activity and space environmental conditions
- Introduce improved atmospheric and oceanic observations and data dissemination capabilities
- Develop and provide new and improved applications and products for a wide range of federal agencies, state and local governments, and private users



# GOES R Mission begins with the User

- User requirements are demanding and exciting
  - New data types and observing strategies
  - More frequent updates
  - Larger and more complex instruments
- > GOES R-Series is part of an integrated "system of systems" with NPOESS and other data sources
- > Data will be used in ways we haven't thought of yet



#### **Instrument Formulation**

- > Allocate user requirements to instrument/sensor capabilities
- > Perform studies to determine feasibility and establish sensor resource requirements for the architecture studies
- > Formulation contracts placed with industry
  - Identify technology challenges
  - Evaluate requirements that can be met now and in the future
  - Identify risk reduction approach
  - ABI is currently under contract. Contract awards for other sensors are planned in 2003 and 2004
- > Evaluate preliminary impacts to data flow and processing



#### Candidate Instruments

- ABI Advanced Baseline Imager
  - 14 18 channels; rapid scan; 5 –15 min full-disk
- > HES Hyperspectral Environmental Suite
  - High spectral sounding capability plus improved imagery for coastal waters, open oceans and severe weather/mesoscale
- > SEM Space Environment Monitor
  - Magnetometer, Energetic Particle Sensors, X-ray Sensor, Extreme Ultraviolet Sensor (improved)
- > SXI Solar X-ray Imager
  - Improved dynamic range, sensitivity and resolution
- CSI Coronagraph Solar Imager
- GLM GOES Lightning Mapper
  - · Lightning Sensor



#### Other Candidate Instruments

- > FDS- Full Disk Sounder
  - Rapid update for global and synoptic numerical weather prediction
- > FDI Full Disk Imager
  - Capture rapidly changing weather and diurnal climate patterns
- > EHS Emissive Hyperspectral Sensor
  - Mesoscale Severe Weather Imager
- > RHS Reflective Hyperspectral Sensor
  - Cloud, land and open ocean imaging
- > GMS GOES Microwave Suite
  - Limited passive microwave capability
- > MFGS Multi-Function GOES Sensor
  - Sounding and imaging



## Purpose of the Architecture Studies

- Achieve as many of the user requirements as possible with acceptable risk
- Determine flexibility of various architectures to accommodate evolving user needs
  - GOES-R will be in service from 2012 2027 we don't expect the configuration to be static
  - Technology will evolve and allow GOES to meet more of the users' needs
  - Users' needs will change
- Provide timely and reliable distribution of the data that can grow with the system
- Perform cost/benefits analysis
  - Help make informed decisions on the cost and risk of each requirement
  - Defend budget requests



## Architecture Study Structure





# **End-to-End System Formulation**

- > Perform a sequence of studies, each involving a suite of instruments
  - Mixing and matching instruments will provide information to build comprehensive set of points (performance, risk, and cost)
- > Each study includes an end-to-end systems design for the mission
- Each study is structured with a basic configuration and selected options
- Cost estimates developed for each configuration
- > The aggregate of studies will provide significant data points along the continuum from minimal to maximal possible configurations and architectures envisioned for the GOES-R Series



# Matrix of Configurations Studied

|            | MULTISAT  |              |                      |         |         |         |                | SINGLESAT  |                        |                                        |                      |
|------------|-----------|--------------|----------------------|---------|---------|---------|----------------|------------|------------------------|----------------------------------------|----------------------|
|            | RUN 1     |              | RUN 2                |         | RUN 3   |         |                | RUN 1      | RUN 2                  | RUN 3                                  | RUN 4                |
|            | "ABI" Sat | "HES"<br>Sat | "FDS" +<br>"EHS" Sat | "C" Sat | HES Sat | ABI Sat | ComSat<br>Wing | Single Sat | Advanced<br>Single Sat | Advanced<br>Single Sat<br>w/ CSI & SEI | "ABI" +<br>"HES" Sat |
| ABI        | Х         |              |                      |         |         | X       |                |            | Х                      | Х                                      | Х                    |
| NGI        |           |              |                      |         |         |         |                | X          |                        |                                        |                      |
| HES        |           | X            |                      |         | X       |         |                |            | X                      | X                                      | X                    |
| NGS        |           |              |                      |         |         |         |                | X          |                        |                                        |                      |
| FDS        |           |              | X                    |         |         |         |                |            |                        |                                        |                      |
| EHS        |           | ;            | X                    |         |         | 10 20   |                |            |                        |                                        | 5.                   |
| GMS        |           |              |                      | X       |         |         |                |            |                        |                                        |                      |
| SXI        | X         |              |                      |         |         |         |                | X          |                        |                                        | X                    |
| CSI        | Х         |              |                      |         |         |         | Х              |            |                        | Х                                      | X                    |
| ESI        |           |              |                      |         |         | X       | X              |            | X                      | X                                      |                      |
| XRS / EUV  |           |              |                      |         |         |         | X              | X          | X                      | X                                      | 0                    |
| SEM        |           | X            |                      |         |         |         | X              | X          | X                      | X                                      | X                    |
| MFS        |           | X            | Х                    |         |         |         |                |            |                        |                                        | Х                    |
| GLM        | X         |              |                      | X       |         |         |                |            |                        |                                        |                      |
| SEI        |           |              |                      |         |         | X       |                |            |                        | X                                      |                      |
| GOES-R IOO |           |              |                      |         | X       |         |                | X          | Х                      | X                                      |                      |



#### 2 Satellite GOES-R Architecture

West East

Advanced Baseline Imager
Hyperspectral Environmental Suite
Space Environment Monitor
Solar X-ray Imager
Services

Advanced Baseline Imager
Hyperspectral Environmental Suite
Space Environment Monitor
Solar X-ray Imager
Services

Additional Instruments could be flown on existing or future satellites

- Microwave Sounder
- Lightning Mapper

- Coronagraph
- Multi-Function Sensor



#### Multi-Satellite GOES-R Architecture

West

Advanced Baseline Imager
Solar X-ray Imager
Services

Hyperspectral Environmental Suite
Space Environment Monitor
Multi-Function Sensor
Services

**East** 

Advanced Baseline Imager
Solar X-ray Imager
Services

Hyperspectral Environmental Suite
Space Environment Monitor
Multi-Function Sensor
Services

Additional Instruments could be flown on existing or future satellites

- Microwave Sounder
- Lightning Mapper

- Coronagraph



# **Preliminary Results**

- > Both, 2 GOES Satellite (current architecture) and Multi-satellite architectures, will meet a large number of current and future user needs
- > A Multi-satellite architecture can better meet user needs while providing:
  - Greater flexibility to fly more sensors
  - Flexibility to introduce new sensor technologies
  - An easier path to add additional sensors in the future



# GOES R Baseline Architecture Planning Schedule







# Back up



# **GOES** Coverage

